Peer to Peer Networks and Web Services for a Community Grid

PTLIU Laboratory for Community Grids
Geoffrey Fox, Marlon Pierce, Shrideep Pallickara, Choonhan Youn
Computer Science, Informatics, Physics
Indiana University
Bloomington IN 47404
gcf@indiana.edu

pervasivetechnologylabs

AT INDIANA UNIVERSITY

P2P Grid Architecture I

- "Everything electronic" is a resource
 - Computers
 - Programs
 - Data (from sensors to this presentation to email to databases)
 - People
- Resources are labeled by XML
 - URI from URL (location) to URN (property tag)
 - Metadata
 - Software Interfaces
 - Personal Information
- XML Interfaces may be "virtual"
 - Define in XML but "compile" to optimized form for performance functionality accessibility trade-offs

P2P Grid Architecture II

- Nearly all resources have a web interface
 - Including people and software components
 - All resources have natural GUI from browser
- Everything is an Object (as opposed to or in addition to being a table or an array)
- Objects have well defined interfaces which can and should be standardized
- Essentially all resources connect with messages which must also have a possibly virtual XML specification
 - This includes resources (such as functions) running in same memory space
 - As well as the more obvious coarser grain web applications

Some Research Issues for P2P Grid

- What happens to programming languages when data structures are defined in XML
- How do we manage a sea of virtual XML?
 - Register, find and link objects
 - This is "distributed operating system of the world"?
- What happens to databases when everything is an Object defined in XML and transformed by Java?
- How and when do we compile virtual XML
 - Convert slow XML message to super fast method call on stack
- How do we implement services such as Security and collaboration over a range of grain sizes
- Supporting all "grain sizes" we get some sort of dynamic fractal world which looks like XML objects exchanging XML messages at all scales
 - Not well supported by centralized services (P2P problem)
- Semantic Grid: as metadata increases, objects link together forming digital brilliance – a phase transition in information space

Compiling for WSDL

Shared Memory

ipgdec5-01

Role of Web Services

- Define interfaces of web applications so that computer-computer interactions are enabled
 - Defines virtual XML for all system and application services
- WSDL is XML versions of Class and Method definitions
- SOAP is XML version of message
- UDDI or WSIL catalogs WSDL based services enabling precise linkage of them
- WSFL and WSCL are candidate linkage languages

Converting a Portal to WSDL

■ Gateway (http://www.gatewayportal.org) is a relatively mature portal supporting Job submission, management and some visualization for codes like ANSYS – developed for DoD HPC centers

ipgdec5-01

WSDL Job Submittal service I

More details at http://www.gatewayportal.org/ and http://aspen.ucs.indiana.edu/ptliu/gatewaywsdl

</portType>

```
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="WebFlowSubmitjobService"</p>
   targetNamespace="http://www.gatewayportal.org/WebFlowSubmitjobService-interface"
   xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
   xmlns:tns="http://www.qatewayportal.org/WebFlowSubmitjobService-interface"
   xmlns:types="http://www.gatewayportal.org/WebFlowSubmitjobService-interface/types/"
   xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 - <message name="IninitializeRequest">
    <part name="meth1_inType1" type="xsd:string" />
                                                      Arguments and return (as
   </message>
                                                       messages)
   <message name="OutinitializeResponse" />
 - <message name="InexecLocalCommandRequest">
                                                       Of two RPC methods in Gateway
    <part name="meth2_inType1" type="xsd:string" />

    should standardize

   </message>
 - <message name="OutexecLocalCommandResponse">
    <part name="meth2_outType" type="xsd:string" />
   </message>
 - <portType name="WebFlowSubmitjobService">
                                                                 (abstract) portType
   - <operation name="initialize">
                                                                 without binding to
      <input message="tns:IninitializeRequest" />
      <output message="tns:OutinitializeResponse" />
                                                                 Transport or Address
    </operation>
                                                                 operation " method
   - <operation name="execLocalCommand">
      <input message="tns:InexecLocalCommandRequest" />
                                                                 Define RPC like
      <output message="tns:OutexecLocalCommandResponse" />
                                                                 methods with in and
    </operation>
                                                                 out parameters
```

WSDL Job Submittal service II

```
- <binding name="WebFlowSubmitjobServiceBinding" type="tns:WebFlowSubmitjobService">
   <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 - <operation name="initialize"> 
                                                                       Two (sample)
     <soap:operation soapAction="urn:WebFlowSubmitjobService" />
                                                                       methods
   <input>
      <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"</pre>
        namespace="urn:WebFlowSubmitjobService" use="encoded" />
     </input>
   - <output>
      <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"</p>
        namespace="urn:WebFlowSubmitjobService" use="encoded" />
     </output>
   </operation>
                                                                  input and output
 - <operation name="execLocalCommand">
                                                                  defined by
     <soap:operation soapAction="urn:WebFlowSubmitjobService" />
                                                                  portTypes
   - <input>
      <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"</p>
        namespace="urn:WebFlowSubmitjobService" use="encoded" />
     </input>
   - <output>
      <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"</p>
        namespace="urn:WebFlowSubmitjobService" use="encoded" />
     </output>
                    Binding asserts operations implemented with SOAP
   </operation>
                   over HTTP protocol
 </binding>
</definitions>
```

WSDL Job Submittal service III

- Define WebFlowSubmitjobService with a single port implementing previous binding at a particular port
- Uses WSDL import syntax to reference previous specifications

```
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="WebFlowSubmitjobService"</p>
   targetNamespace="http://www.gatewayportal.org/WebFlowSubmitjobService"
   xmlns="http://schemas.xmlsoap.org/wsdl/"
   xmlns:interface="http://www.gatewayportal.org/WebFlowSubmitjobService-interface"
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
   xmlns:types="http://www.gatewayportal.org/WebFlowSubmitjobService"
   xmlns:xsd="http://www.w3.org/2001/XMLSchema">
   <import location="http://community.ucs.indiana.edu:8004/soap/WebFlowSubmitjobService-</p>
     interface.wsdl" namespace="http://www.gatewayportal.org/WebFlowSubmitjobService-
     interface" />
 - <service name="WebFlowSubmitjobService">
     <documentation>IBM WSTK V2.4 generated service definition file</documentation>
   - <port binding="interface:WebFlowSubmitjobServiceBinding"</p>
                                                                    Use operations
      name="WebFlowSubmitjobServicePort">
                                                                    from this binding
      <soap:address
        location="http://community.ucs.indiana.edu:8004/soap/servlet/rpcrouter"/>
     </port>
   </service>
                                                            Address
 </definitions>
```

SOAP and Gateway Portal I

- Having specified service in WSDL, the runtime is implemented in SOAP
- Here is SOAP over HTTP message from client

SOAP Envelope With body ■ This is execLocalCommand to run one particular command (ls) on current WebFlow directory

```
POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost
                                            HTTP Header
Content-Type: text/xml; charset=utf-8
Content-Length: 497 SOAPAction: ""
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"</p>
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd=
  "http://www.w3.org/2001/XMLSchema"
<SOAP-ENV: Body>
<ns1:execLocalCommand xmlns:ns1="http://www.gatewayportal.org/WebFlowSubmitJob"</pre>
  SOAP-ENV: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<localcmd xsi:type="xsd:string">ls</localcmd>
</ns1:execLocalCommand>
                                               First argument
</SOAP-ENV: Body>
 /SOAP-ENV: Envelope>
```

```
HTTP/1 0 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 1451
Set-Cookie2: JSESSIONID=o01hgu5vp1:Version=1:Discard:Path="/soap"
Set-Cookie: JSESSIONID=o01hgu5vp1;Path=/soap
Servlet-Engine: Tomcat Web Server/3.2.3 (JSP 1.1; Servlet 2.2; Java 1.3.1 01; SunOS 5.8
                 sparc: java.vendor=Sun Microsvstems Inc.)
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"</p>
    xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
    mlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV: Body>
<ns1:execLocalCommandResponse</pre>
  xmlns:ns1="http://www.gatewavportal.org/WebFlowSubmitJob"
  SOAP-ENV: encodingStyle= "http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:string">
BC idl
BeanContextChildSupport.java
BeanContextEventImpl.java
BeanContextMembershipEventImpl.java
BeanContextServiceAvailableEventImpl.java
BeanContextServiceRevokedEventImpl.java
BeanContextServicesSupport.java
BeanContextSupport.java
Charon
Collaborator
ContextManager
Control
masterModules.conf
master test.conf
master testNT.conf
myHashMap.java
printProcessOut.java
remotefile
slave test.conf
slave test.conf~
slave_testNT.conf
submitJob
</return>
</ns1:execLocalCommandResponse>
```

</SOAP-ENV: Body> </SOAP-ENV:Envelope>

Header

SOAP Envelope and body

SOAP and Gateway Portal II

And this is the result of ls sent back to client in SOAP over HTTP

Next Steps in WSDL Portals

- Agree on WSDL Interfaces for important job submittal and management functions
 - Are computers also defined in WSDL believe so
- Set up UDDI servers to catalog amnd retrieve WSDL services
 - How is this consistent with current Grid Information Services?
- Set up interoperability test bed
- Build "HPCC compiled" web services
- Look at other computational science applications
 - Databases
 - NASA/EU SLE (Space Link extension) standard for ground stations for sensors

SOAP Binding to SMTP

- You can use this
 to queue up your
 job requests by
 email on your
 airtrip and send
 when you land
- Value of separation of function and protocol

```
Subject: Travel to LA
Date: Thu, 29 Nov 2001 13:20:00 EST
Message-Id: <EE492E16A0B8D311AC490090276D20 124960C0C@mycompany.com>
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2001/09/soap-envelope">
 <env: Header>
  <m:reservation xmlns:m="http://travelcompany.org/reservation"</pre>
          env:actor="http://www.w3.org/2001/09/soap-envelope/actor/next"
           env:mustUnderstand="true">
   <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</reference>
   <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
  </m:reservation>
  <n:passenger xmlns:n="http://mycompany.com/employees"
          env:actor="http://www.w3.org/2001/09/soap-envelope/actor/next"
           env:mustUnderstand="true">
  <n:name>John Doe</n:name>
  </n:passenger>
</env:Header>
 <env:Body>
  <p:itinerary xmlns:p="http://travelcompany.com/reservation/travel">
  <p:departure>
     <p:departing>New York</p:departing>
     <p:arriving>Los Angeles</p:arriving>
     <p:departureDate>2001-12-14</p:departureDate>
     <p:departureTime>late afternoon</p:departureTime>
     <p:seatPreference>aisle</p:seatPreference>
  </p:departure>
  <p:return>
     <p:departing>Los Angeles</p:departing>
     <p:arriving>New York</p:arriving>
     <p:departureDate>2001-12-20</p:departureDate>
     <p:departureTime>mid morning</p:departureTime>
     <p:seatPreference/>
  </p:itinerary>
 <q:lodging xmlns:q="http://travelcompany.com/reservation/hotels">
  <q:preference>none</q:preference>
  </g:lodging>
</env:Body>
```

From: john.doe@mycompany.com

</env:Envelope>

To: reservations@travelcompany.org

Threaded Discussion/Reporting as a Web Service

Support email or form based reporting/discussion

Design an
Application
Specific
Schema
Can of course
process email
as Web service

Testing for
Student reports
And Web site
updates
with report
Web Service
built around
"publish/
subscribe" Web
Service
(later)

```
<?xml version="1.0" encoding="UTF-8" ?>
- <okc xmlns="http://grids.ucs.indiana.edu/okc/schema/admin/ver/1"</p>
   xmlns:cg="http://grids.ucs.indiana.edu/okc/schema/cg/ver/1"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://grids.ucs.indiana.edu/okc/schema/admin/ver/1
   http://grids.ucs.indiana.edu/schemas/okc-v1.xsd
   http://grids.ucs.indiana.edu/okc/schema/cg/ver/1
   http://grids.ucs.indiana.edu/schemas/commgrids-v1.xsd" version="1">
   <comment>OKC message schema developed</comment>
   <sender>Ozqur Balsoy</sender>
   <distribution>Community Grids Research Group</distribution>
   <organization>Community Grids Laboratory,Indiana University</organization>
   <update createuri="gxos://okctest/users/balsoy/12november2001/1" />
   <keywords>okc community grids mail handler message schema</keywords>
 - <message whitespace="preserve">
     In this weekly meeting with Ali Kaplan and Ahmet Topcu, we have published the OKC
     message schema version 1. The schema is inherited from
     <keyword>GXOS</keyword>
     Event Object with additional elements such as Sender, Subject, and Attachments. The
     schema is available online at
     http://grids.ucs.indiana.edu/schemas/mailhandler/index.html. Its namespace is
     http://grids.ucs.indiana.edu/okc/message/1.
   </message>
   <filingdate>11/12/2001</filingdate>
   <cq:category main="general" />
   <cq:category main="facility" sub="okc" />
   <cg:category main="facility" sub="other" other="mailhandler" />
   <cg:category main="research" sub="okc" />
   <cq:messagetype>Weeklyreport</cq:messagetype>
 </okc>
```

Science as a Web Service

- Build a network of linked web-based applications to support science
 - Simulation, visualization, data-input, data analysis, publication are web services made up themselves of smaller web services (like ls in Gateway!)
- Enable "plug and play" of modules so supporting "Science for the Americas"
 - Modules can vary from high end research to K-12 instruction
 - Enable a distributed less monolithic approach to research
 - People in network as research colleagues or mentors
- Requires collaborative web services

Some Science Web Services

■ These build on general (community) web services

Science and Engineering Generic Services

Authoring and Rendering	Storage Rendering and Authoring of Mathematics, scientific whiteboards, nD (n=2,3) support, GIS, Virtual worlds
Multidisciplinary Services	Optimization (NEOS), image processing, <u>netsolve</u> , <u>ninf</u> , <u>Matlab</u> as a collaborative Grid Service
Education Services	Authoring, curriculum specification, assessment and evaluation, self paced learning (from K-12 to Lifelong)

Science and Engineering Research

Portal Services	Job control/submission, scheduling, visualization, parameter specification
Legacy Code Support	Wrapping, application Integration, version control, monitoring
Scientific Data Services	High Performance, special formats, virtual data as in <u>Griphyn</u> , scientific journal publication, Geographical Information Systems
Research Support Services	Scientific notebook/whiteboard, brainstorming, seminars, theorem proving
Experiment Support	Virtual Control Rooms (accelerator to satellite), Data analysis, virtual instruments, sensors (Satellites to field work to wireless to video to medical instruments (Telemedicine Grid Service)
Outreach	Multi-cultural customization, multi-level presentations

Some General Grid Web Services

Basic Grid Computational System Services

Security Services	Authorization, authentication, privacy
Scheduling	Advance reservations, resource co-scheduling
Data Services	Data object name-space management, file staging, data stream management, caching
User Services	Trouble tickets, problem resolution
App Services	Application tracking, performance analysis
Monitoring Service	Keep-alive meta-services

General Collaboration, Planning and Knowledge Grid Services

People Collaboration	Access Grid - Desktop AV
Resource Collaboration	P2P based document Sharing, WebDAV, News groups, channels, instant messenger, whiteboards, annotation systems
Decision Making Services	Surveys, consensus, group mediation
Knowledge Discovery Service	Data mining, indexes (myGoogle: directory based or unstructured), metadata indexes, digital library services
Workflow Services	Support flow of information (approval) through some process, secure authentication of this flow. Planning and documentation
Authoring Services	Multi-fragment pages, Charts, Multimedia
Universal Access	From PDA/Phone to disabilities

Education as a Web Service

- Can link to Science as a Web Service and substitute educational modules
- "Learning Object" XML standards already exist from IMS/ADL http://www.adlnet.org – need to update architecture
- Web Services for virtual university include:
- Registration
- Performance (grading)
- Authoring of Curriculum
- Online laboratories for real and virtual instruments
- Homework submission
- Quizzes of various types (multiple choice, random parameters)
- Assessment data access and analysis
- Synchronous Delivery of Curricula
- Scheduling of courses and mentoring sessions
- Asynchronous access, data-mining and knowledge discovery

Audio Video Conferencing as a Web Service

- This could be similar to vrvs.org with different ports corresponding to different protocols
- Use "universal messaging subsystem" to transmit A/V streams between sources and sinks

Semantic Grid & Digital Brilliance

- Peer to Peer networks teach us that we can build "small worlds" where distance between nodes is logarithmic in number of nodes
- Consider a Grid of WSDL services linked (through UDDI) together
 - This is spirit of Semantic web metadata enables meaningful linkage
- We do not need to link everybody but only to establish "small world" routes
- Physics analogies suggest that phase transitions will occur when "enough" nodes are linked – one will get nodes to align in the direction of new knowledge
- This suggests ways of quantifying value of metadata induced linkages and areas where one "should" add more WSDL specifications

Publish/Subscribe as a Web Service

- We can implement messaging subsystem (between WSDL resources) with either direct messages or by a queued system where you publish messages to queues and subscribe as receiver to particular queues
 - Natural asynchronous collaboration model which is in fact fast enough for synchronous collaboration
- There are many different publish/subscribe models
 - JMS is a cluster of central servers
 - JXTA is a very dynamic Peer to Peer model where pipes are queues and topics (metadata) are service advertisements
- Implement JMS API with JXTA protocol different WSDL bindings here have different fault tolerance/reliability semantics
 - Could use JMS as long distance "carrier" between JXTA peers
 - JXTA provides higher performance than JMS for nearby recipients
- Pallickara built an intermediate dynamic GXOS message broker subsystem

Broker Network Software multicast P2P: Brokers are clients Broker Broker Resource Broker Broker **Data** Broker base Broker ipgdec5-01

Collaborative Web Resources

- Collaboration is "just" sharing objects
- What about Collaborative Web Services ?
 - You can in some cases do this automatically just by multicasting messages from service to clients
 - This is achieved by service publishing messages and clients subscribing
- Many applications do not expose all state changes
 - E.g. when I edit PowerPoint slide, PowerPoint does not tell the world by sending an (XML) message
- Solved by shared event collaboration model and requires one to view user interface as a "port" in WSDL sense and treat "event handlers" (mouseover, click etc.) as messages in WSDL
- Groove Networks does use XML front end to COM interfaces
 - More elegantly can use W3C DOM for (the few) documents (SVG is one) and "universal event handlers"
- Interesting research area